GI Project, Space Weather Research Lab, NJIT

- 1. Status of Global Halpha Network
- 2. A case study of filament eruption observed by STEREO
- 3. Coronal Implosion

GLOBAL HIGH RESOLUTION Ha NETWORK TO SUPPORT STEREO

GLOBAL HIGH RESOLUTION Ha NETWORK

GLOBAL HIGH-RESOLUTION Hα NETWORK

SUN ONLINE RECENT MOVIES **DAILY MOVIES** SOLAR ACTIVITY

LATEST IMAGES **HOURLY DATA ARCHIVE**

NEWS

NETWORK SCIENCE SITES INSTRUMENTS **OBSERVATIONS PUBLICATIONS** PEOPLE

LINKS

Follow this link for all latest images in the archive

Mauna Loa Solar Observatory Observatory

Big Bear Solar

Observatoire de Paris, Meudon

Observatoire Midi-Pyrénées

Kanzelhöhe Solar

Catania

Yunnan Astrophysical Astronomical Observatory Observatory Observatory

Huairou Solar

19:53:00 UT. 19:53:35 UT. Jan 25, 2009 Dec 03, 2008

10:08:21 UT. Jan 25, 2009

10:41:26 UT. Jan 20, 2009

08:59:25 UT. Jan 17, 2009

09:52:20 UT. Jan 19, 2009

01:51:40 UT. Mar 22, 2007

07:38:10 UT. Jan 18, 2009

19:58:00 UT. 19:53:35 UT. Jan 25, 2009 Dec 03, 2008

14:20:34 UT. Jan 23, 2009

10:41:32 UT. Jan 20, 2009

Jan 17, 2009

09:52:20 UT. Jan 19, 2009

03:26:57 UT. Dec 03, 2008

07:38:10 UT. Jan 18, 2009

Upper Panel: Original data. Lower Panel: Contrast enhanced images. Please click on the images to view the 2K x 2K versions.

GLOBAL HIGH RESOLUTION Ha NETWORK

- >Provide complete data sets for correlative studies with other ground-(magnetic field; white light) and space-based observations (SOHO, TRACE, RHESSI, HINODE, STEREO)
- >filament disappearance and coronal mass ejections
- >magnetic field configurations and CMEs driving mechanisms
- >CME Initiating active regions and interplanetary magnetic fields
- >Studies of solar flares jointly with RHESSI
- >Filament Oscillations; Moreton Waves; Differential Rotation
- >Large scale flows in active regions
- Providing high quality data for solar activity forecasting

GLOBALHα NETWORK IMPROVEMENT OF DATA SERVICE

Study of a STEREO Filament

 By Yan Xu et al., (Solar Physics topical issue)

Simultaneous heating of filament in H-alpha and EUV 304 Å

http://www.lmsal.com/~aschwand/stereo/stereo_soft/software2.html

The filament's altitude in EVU 304 $\mathring{\mathbf{A}}$ is 59.7 to \pm 86.7 Mm.

We assume that the filament in H-alpha should have the same inclination angle as that in EUV. Therefore the estimated height in H-alpha is ranged from 47.2 to 69.5 Mm.

Before Flare

Before Reconnection

After Reconnection

Reconciliation

- (a): Same initial configuration as tethercutting. Keep in mind the reverse Sshaped sigmoid is associated with the counter-clockwise rotation of the filament
- (b): Two elbow-like field lines are pushed together due to the writhing motion (cf. Gibson & Fan 2006)
- (c): Reconnection at the opposing higher arched portions, as opposed to the lower dipped portions in 'conventional' tether-cutting.
 - Reconnection within the filament → filament separation
 - Reconnection above the filament -> newly reconnected higher loop lying above the dark filament
 - Newly reconnected lower loop has a sigmoidal shape, as opposed to compact loop in 'conventional' tethercutting

Dr. Rui Liu's Thesis

EUV 304 Å

Veronig et al. 2008

Coronal Implosion

Rui Liu et al.

Introduction

- Inevitability of coronal implosion 2000)
 - Coronal transients derive energy directly from magnetic field
 - Gravitational potential energy plays no significant role $-\nabla(\frac{B_f^2}{8\pi}) + \frac{1}{4\pi}(\vec{B}_c \cdot \nabla)\vec{B}_c \approx 0$

- Observational evidence of the reduction of magnetic energy in the flaring region
 - Descending flare looptop (Sui & Holman 2003; Sui et al. 2004;
 Liu et al. 2004, 2008; Veronig et al. 2006; Li & Gan 2005, 2006; Joshi et al. 2008)
 - Converging flare conjugate footpoints along the neutral line (Ji et al. 2004, 2006, 2007)
- Dilemma of coronal implosion: we always observe explosion rather than implosion

- Contraction started during the pre-heating phase, and continued well into the impulsive phase
- Associated with the descending looptop and the converging conjugate footpoints
- Expansion following the contraction leads to the eruption of the whole magnetic structure

Concluding Remarks

- The third assumption on which the Hudson Conjecture is based, β <<1, is often violated in the flaring region ($\beta \ge 0.7$ at the flare looptop in our case)
- Prolonged pre-heating phase dominated by coronal emission, which effectively suppresses explosive chromospheric evaporation, is a necessary condition for the observation of

coronal implosion
$$t > \frac{5 \times 10^9 \text{ cm}}{V_A} \approx \frac{5 \times 10^9 \text{ cm}}{10^8 \text{ cm s}^{-1}} = 50 \text{ s}$$